行业动态

网站首页 > 新闻中心 > 行业动态 > 广东工业大学伍尚华教授团队——结构陶瓷中的光固化与传统胶态成型方法:进展、挑战和未来展望

广东工业大学伍尚华教授团队——结构陶瓷中的光固化与传统胶态成型方法:进展、挑战和未来展望

发布时间:2024-01-26 03:31:42来源:AMF增材制造前沿浏览量:
引用论文

Yehua Li, Pengfei Sheng, Lifu Lin, Liang Wang, Donglin Lu, Kunji Lin, Haidong Wu, Shanghua Wu, Vat Photopolymerization versus Conventional Colloidal Processing Methods in Structural Ceramics: Progress, Challenges, and Future Perspectives, Additive Manufacturing Frontiers, 2024, 200110, ISSN 2950-4317, https://doi.org/10.1016/j.amf.2024.200110.

文章链接:
https://www.sciencedirect.com/science/article/pii/S2950431724000017


 
1 研究现状

相比于传统的胶态成型(流延、注浆、凝胶注模成型),立体光固成型具有成型精度高,表面质量好的特点,在制备高度复杂陶瓷部件具有独特优势。目前陶瓷立体光固化技术在浆料制备、成型工艺、脱脂、烧结及性能表征方面已经取得重大突破,促进了结构陶瓷在航天航空、医疗植入、电子封装、珠宝首饰等领域的应用与发展。
 
2 研究难点或瓶颈

首先,高固相含量、低粘度的陶瓷浆料难以制备问题仍是限制光固化技术制备高性能陶瓷部件的关键因素;其次,粉体对紫外光的吸收和散射仍是影响成型精度、成型速度及坯体强度的重要因素之一;最后,脱脂、烧结过程的缺陷形成机制仍不清晰,缺陷与形性控制仍然艰难,特别是大尺寸、复杂结构、多材料集成陶瓷部件的性能调控与净尺寸成型研究仍是空白。
 

3 展望

在浆料制备上,仍需突破高固含量、低粘度浆料难制备问题,并开发光固化性能好、固化收缩率低、打印坯体机械强度足够的光固化陶瓷浆料。在打印过程中,还需系统分析陶瓷浆料与紫外光的相互作用,探索陶瓷粉体表面特性对紫外光吸收效率的影响,研究浆料中紫外光的耗散规律。此外,打印速度与打印尺寸仍需进一步提高,以提高陶瓷制备的效率。脱脂过程中的开裂、翘曲及各方向收缩不一致问题还有待解决。烧结温度场和应力场的控制技术、陶瓷的后续强化技术,以及控制应发展尺寸精度技术仍需完善。此外,应当开发完善多材料打印设备以及大尺寸陶瓷打印设备,并结合结构设计与工艺优化,实现多材料-多结构-多功能陶瓷部件一体化设计与制备。

 
 
关于团队

团队带头人


 
伍尚华,广东工业大学特聘教授、博士生导师,兼任中国机械工程学会增材制造专委会和工程陶瓷专委会成员以及中国专业标准化技术委员会委员。长期从事先进材料和先进制造技术的研究,先后在世界一流实验室和跨国公司从事科研创新工作。在Advanced Materials, Additive Manufacturing , Virtual and Physical Prototyping等刊物上发表科研论文150多篇。
 
团队研究方向
 
广东工业大学“先进加工工具与高技术陶瓷研究中心”(广东省高技术陶瓷精密制造工程技术研究中心)依托广东工业大学“微电子精密制造技术与装备”省部共建科技部重点实验室和“高性能工具全国重点实验室”建立。主要研究方向包括(1) 陶瓷材料与金属陶瓷增材制造(3D打印);(2)高端装备核心陶瓷部件研发;(3)难加工材料的高速高效加工。
 
近年团队发表文章

[1] Ou J, Huang M, Wu Y, et al. Additive manufacturing of flexible polymer-derived ceramic matrix composites. Virtual and Physical Prototyping, 2023, 18(1): e2150230.
[2] Lin K, Zong X, Sheng P, et al. Effects of SmF3 addition on aluminum nitride ceramics via pressureless sintering. Journal of the European Ceramic Society, 2023, 43(15): 6804-6814.
[3] Sheng P, Nie G, Li Y, et al. Enhanced curing behavior, mechanical and thermal properties of 3D printed aluminum nitride ceramics using a powder coating strategy. Additive Manufacturing, 2023, 74: 103732.
[4] Huang S, Yang P, Sheng P, et al. Additive manufacturing of complex-shaped and porous silicon nitride-based components for bionic bones. Ceramics International, 2023.
[5] Liu W, Wu H, Xu Y, et al. Cutting performance and wear mechanism of zirconia toughened alumina ceramic cutting tools formed by vat photopolymerization-based 3D printing. Ceramics International, 2023, 49(14): 23238-23247.
[6] Huang S, Li Y, Yang P, et al. Cure behaviour and mechanical properties of Si3N4 ceramics with bimodal particle size distribution prepared using digital light processing. Ceramics International, 2023, 49(8): 12166-12172.
[7] Wu H, Liu W, Xu Y, et al. Vat photopolymerization-based 3D printing of complex-shaped and high-performance Al2O3 ceramic tool with chip-breaking grooves: Cutting performance and wear mechanism. Journal of Asian Ceramic Societies, 2023, 11(1): 159-169.
[8] He S, Li Y, Zong X, et al. The Effect of AlN Content on the Properties of Al2O3-AlN Composite Ceramics Fabricated by Digital Light Processing. Crystals, 2023, 13(1): 107.
[9] Wu H, Liu W, Lin L, et al. Realization of complex-shaped and high-performance alumina ceramic cutting tools via Vat photopolymerization based 3D printing: A novel surface modification strategy through coupling agents aluminic acid ester and silane coupling agent. Journal of the European Ceramic Society, 2023, 43(3): 1051-1063.
[10] Lin K, Nie G, Sheng P, et al. Effects of doping Al-metal powder on thermal, mechanical and dielectric properties of AlN ceramics. Ceramics International, 2022, 48(24): 36210-36217.
[11] Chen H, Nie G, Li Y, et al. Improving relative density and mechanical strength of lunar regolith structures via DLP-stereolithography integrated with powder surface modification process. Ceramics International, 2022, 48(18): 26874-26883.
[12] Ding D, Zhao Z, Huang D, et al. Effect of the calcined andalusite aggregates on the micro-crack formation and thermal shock resistance of mullite castables. Ceramics International, 2022, 48(15): 21515-21519.
[13] Huang M, Huang Y, Ou J, et al. Effect of a new nonoxide additive, Y3Si2C2, on the thermal conductivity and mechanical properties of Si3N4 ceramics. International Journal of Applied Ceramic Technology, 2022, 19(6): 3403-3409.
[14] Huang M, Wu Y, Ou J, et al. 3D-printing of polymer‐derived SiCN ceramic matrix composites by digital light processing. Journal of the European Ceramic Society, 2022, 42(13): 5476-5483.
[15] Lu D, Yang P, Huang Y, et al. Enhanced thermal conductivity in Si3N4 ceramics by carbonizing polydopamine coatings. Ceramics International, 2022, 48(13): 18615-18624.
[16] Wu H, Liu W, Lin L, et al. The rising crack resistance curve behavior and mechanism of La2O3 doped zirconia toughened alumina composites prepared via vat photopolymerization based 3D printing. Materials Chemistry and Physics, 2022, 285: 126090.
[17] Zou W, Yang P, Lin L, et al. Improving cure performance of Si3N4 suspension with a high refractive index resin for stereolithography-based additive manufacturing. Ceramics International, 2022, 48(9): 12569-12577.
[18] Yang P, Sun Z, Huang S, et al. Digital light processing 3D printing of surface-oxidized Si3N4 coated by silane coupling agent. Journal of Asian Ceramic Societies, 2022, 10(1): 69-82.
[19] Lin L, Wu H, Ni P, et al. Additive manufacturing of complex-shaped and high-performance aluminum nitride-based components for thermal management. Additive Manufacturing, 2022, 52: 102671.
[20] Lin L, Wu H, Huang Z, et al. Effect of monomers with different functionalities on stability, rheology, and curing behavior of ceramic suspensions. Materials Chemistry and Physics, 2022, 275: 125243.
[21] Li Y, Huang S, Wang S, et al. Research on the effects of surface modification of ceramic powder on cure performance during digital light processing (DLP). Ceramics International, 2022, 48(3): 3652-3658.
[22] Yang P, Wu S, Wu H, et al. Prediction of bending strength of Si3N4 using machine learning. Ceramics International, 2021, 47(17): 23919-23926.
[23] Nie G, Li Y, Sheng P, et al. Microstructure refinement-homogenization and flexural strength improvement of Al2O3 ceramics fabricated by DLP-stereolithography integrated with chemical precipitation coating process. Journal of Advanced Ceramics, 2021, 10: 790-808.
[24] Guanglin N, Pengfei S, Yehua L, et al. Preparation of a Hydrolysis-Resistant Coating on AlN Powder Surface and Its Effect on Thermal Conductivity of AlN Ceramic. Rare Metal Materials and Engineering, 2021, 50(6):1904-1909.
 
增材制造专业委员会公众号

增材制造专业委员会公众号